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a École Normale Supérieure, Paris, France
b ICREA, Spain

c Department of Economics and Business, Pompeu Fabra University, Spain

Received 21 April 2015; accepted 22 October 2015
Available online 6 May 2016

This paper is dedicated to the memory of Evarist Giné

Abstract

An important part of the legacy of Evarist Giné is his fundamental contributions to our understanding of
U -statistics and U -processes. In this paper we discuss the estimation of the mean of multivariate functions
in case of possibly heavy-tailed distributions. In such situations, reliable estimates of the mean cannot be
obtained by usual U -statistics. We introduce a new estimator, based on the so-called median-of-means
technique. We develop performance bounds for this new estimator that generalizes an estimate of Arcones
and Giné (1993), showing that the new estimator performs, under minimal moment conditions, as well
as classical U -statistics for bounded random variables. We discuss an application of this estimator to
clustering.
c⃝ 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Motivated by numerous applications, the theory of U -statistics and U -processes has received
considerable attention in the past decades. U -statistics appear naturally in ranking [7],
clustering [6] and learning on graphs [3] or as components of higher-order terms in expansions
of smooth statistics, see, for example, [20]. The general setting may be described as follows. Let
X be a random variable taking values in some measurable space X and let h : X m

→ R be a
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measurable function of m ≥ 2 variables. Let P be the probability measure of X . Suppose we
have access to n ≥ m independent random variables X1, . . . , Xn , all distributed as X . We define
the U -statistics of order m and kernel h based on the sequence {X i } as

Un(h) =
(n − m)!

n!


(i1,...,im )∈I m

n

h(X i1 , . . . , X im ), (1)

where

I m
n =


(i1, . . . , im) : 1 ≤ i j ≤ n, i j ≠ ik if j ≠ k


is the set of all m-tuples of different integers between 1 and n. U -statistics are unbiased estimators
of the mean mh = Eh(X1, . . . , Xm) and have minimal variance among all unbiased estimators
[12]. Understanding the concentration of a U -statistics around its expected value has been subject
of extensive study. de la Peña and Giné [9] provide an excellent summary but see also [11] for a
more recent development.

By a classical inequality of Hoeffding [13], for a bounded kernel h, for all δ > 0,

P

|Un(h) − mh | > ∥h∥∞

 log


2
δ


2⌊n/m⌋

 ≤ δ, (2)

and we also have the “Bernstein-type” inequality

P

|Un(h) − mh | >

4σ 2 log


2
δ


2⌊n/m⌋

∨

4 ∥h∥∞ log


2
δ


6⌊n/m⌋

 ≤ δ,

where σ 2
= Var (h(X1, . . . , Xm)).

However, under certain degeneracy assumptions on the kernel, significantly sharper bounds
have been proved. Following the exposition of de la Peña and Giné [9], for convenience, we
restrict out attention to symmetric kernels. A kernel h is symmetric if for all x1, . . . , xm ∈ R and
all permutations s,

h(x1, . . . , xm) = h(xs1 , . . . , xsm ).

A symmetric kernel h is said to be P-degenerate of order q − 1, 1 < q ≤ m, if for all
x1, . . . , xq−1 ∈ X ,

h(x1, . . . , xm)d Pm−q+1(xq , . . . , xm) =


h(x1, . . . , xm)d Pm(x1, . . . , xm)

and

(x1, . . . , xq) →


f (x1, . . . , xm)d Pm−q(xq+1, . . . , xm)

is not a constant function. In the special case of mh = 0 and q = m (i.e., when the kernel is
(m − 1)-degenerate, h is said to be P-canonical). P-canonical kernels appear naturally in the
Hoeffding decomposition of a U -statistic, see [9].
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Arcones and Giné [2] proved the following important improvement of Hoeffding’s inequalities
for canonical kernels: If h−mh is a bounded, symmetric P-canonical kernel of m variables, there
exist finite positive constants c1 and c2 depending only on m such that for all δ ∈ (0, 1),

P

|Un(h) − mh | ≥ c1 ∥h∥∞


log

 c2
δ


n

m/2
 ≤ δ, (3)

and also

P

|Un(h) − mh | >


σ 2 log

 c1
δ


c2n

m/2

∨
∥h∥∞
√

n


log

 c1
δ


c2

(m+1)/2
 ≤ δ. (4)

In the special case of P-canonical kernels of order m = 2, (3) implies that

|Un(h) − mh | ≤
c1 ∥h∥∞

n
log

c2

δ


, (5)

with probability at least 1 − δ. Note that this rate of convergence is significantly faster than the
rate Op(n−1/2) implied by (2).

All the results cited above require boundedness of the kernel. If the kernel is unbounded
but h(X1, . . . , Xm) has sufficiently light (e.g., sub-Gaussian) tails, then some of these results
may be extended, see, for example, [11]. However, if h(X1, . . . , Xm) may have a heavy-tailed
distribution, exponential inequalities do not hold anymore (even in the univariate m = 1 case).
However, even though U -statistics may have an erratic behavior in the presence of heavy tails, in
this paper we show that under minimal moment conditions, one may construct estimators of mh
that satisfy exponential inequalities analogous to (2) and (3). These are the main results of the
paper. In particular, in Section 2 we introduce a robust estimator of the mean mh . Theorems 1
and 3 establish exponential inequalities for the performance of the new estimator under minimal
moment assumptions. More precisely, Theorem 1 only requires that h(X1, . . . , Xm) has a finite
variance and establishes inequalities analogous to (3) for P-degenerate kernels. In Theorem 3 we
further weaken the conditions and only assume that there exists 1 < p ≤ 2 such that E|h|

p < ∞.
The next example illustrates why classical U -statistics fail under heavy-tailed distributions.

Example. Consider the special case m = 2, EX1 = 0 and h(X1, X2) = X1 X2. Note that
this kernel is P-canonical. We define Y1, . . . , Yn as independent copies of X1, . . . , Xn . By
decoupling inequalities for the tail of U -statistics given in Theorem 3.4.1 in [9] (see also

Theorem 7 in the Appendix), Un(h) has a similar tail behavior to


1
n

n
i=1 X i

 
1

n−1

n−1
j=1 Y j


.

Thus, Un(h) behaves like a product of two independent empirical mean estimators of the same
distribution. When the X i are heavy tailed, the empirical mean is known to be a poor estimator
of the mean. As an example, assume that X follows an α-stable law S(γ, α) for some α ∈ (1, 2)

and γ > 0. Recall that a random variable X has an α-stable law S(γ, α) if for all u ∈ R,

E exp(iu X) = exp(−γ α
|u|

α)

(see [21,19]). Then it follows from the properties of α-stable distributions (summarized in
Proposition 9 in the Appendix) that there exists a constant c > 0 depending only on α and γ

such that

P


Un(h) ≥ n2/α−2


≥ c,
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and therefore there is no hope to reproduce an upper bound like (5). Below we show how this
problem can be dealt with by replacing the U -statistics by a more robust estimator.

Our approach is based on robust mean estimators in the univariate setting. Estimation of the
mean of a possibly heavy-tailed random variable X from i.i.d. sample X1, . . . , Xn has recently
received increasing attention. Introduced by Nemirovsky and Yudin [18], the median-of-means
estimator takes a confidence level δ ∈ (0, 1) and divides the data into V ≈ log δ−1 blocks.
For each block k = 1, . . . , V , one may compute the empirical mean µk on the variables in the
block. The median µ of the µk is the so-called median-of-means estimator. A short analysis of
the resulting estimator shows that

|µ − mh | ≤ c


Var (X)


log(1/δ)

n
with probability at least 1 − δ for a numerical constant c. For the details of the proof see
[15]. When the variance is infinite but a moment of order 1 < p ≤ 2 exists, the median-
of means estimator is still useful, see [4]. This estimator has recently been studied in various
contexts. M-estimation based on this technique has been developed by Lerasle and Oliveira [15]
and generalizations in a multivariate context have been discussed by Hsu and Sabato [14] and
Minsker [17]. A similar idea was used in [1]. An interesting alternative of the median-of-means
estimator has been proposed by Catoni [5].

The rest of the paper is organized as follows. In Section 2 we introduce a robust estimator
of the mean mh and present performance bounds. In particular, Section 2.1 deals with the
finite variance case. Section 2.2 is dedicated to case when h has a finite pth moment for some
1 < p < 2 for P-degenerate kernels. Finally, in Section 3, we present an application to clustering
problems.

2. Robust U-estimation

In this section we introduce a “median-of-means”-style estimator of mh = Eh(X1, . . . , Xm).
To define the estimator, one divides the data into V blocks. For any m-tuple of different blocks,
one may compute a (decoupled) U -statistics. Finally, one computes the median of all the obtained
values. The rigorous definition is as follows.

The estimator has a parameter V ≤ n, the number of blocks. A partition B = (B1, . . . , BV )

of {1, . . . , n} is called regular if for all K = 1, . . . , V ,|BK | −
n

V

 ≤ 1.

For any Bi1 , . . . , Bim in B, we set

IBi1 ,...,Bim
=

(k1, . . . , km) : k j ∈ Bi j


and

UBi1 ,...,Bim
(h) =

1
|Bi1 | · · · |Bim |


(k1,...,km )∈IBi1

,...,Bim

h(Xk1 , . . . , Xkm ).

For any integer N and any vector (a1, . . . , aN ) ∈ RN , we define the median Med(a1, . . . , aN )

as any number b such that{i ≤ N : ai ≤ b}
 ≥

N

2
and

{i ≤ N : ai ≥ b}
 ≥

N

2
.
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Finally, we define the robust estimator:

U B(h) = Med{UBi1 ,...,Bim
(h) : i j ∈ {1, . . . , V }, 1 ≤ i1 < · · · < im ≤ V }. (6)

Note that, mostly in order to simplify notation, we only take those values of UBi1 ,...,Bim
(h)

into account that correspond to distinct indices i1 < · · · < im . Thus, each UBi1 ,...,Bim
(h) is

a so-called decoupled U -statistics (see the Appendix for the definition). One may incorporate
all m-tuples (not necessarily with distinct indices) in the computation of the median. However,
this has a minor effect on the performance. Similar bounds may be proven though with a more
complicated notation.

A simpler alternative is obtained by taking only “diagonal” blocks into account. More
precisely, let UBi (h) be the U -statistics calculated using the variables in block Bi (as defined
in (1)). One may simply calculate the median of the V different U -statistics UBi (h). This version
is easy to analyze because

{i ≤ V : UBi (h) ≥ b}
 is a sum of independent random variables.

However, this simple version is wasteful in the sense that only a small fraction of possible m-
tuples are taken into account.

In the next two sections we analyze the performance of the estimator U B(h).

2.1. Exponential inequalities for P-degenerate kernels with finite variance

Next we present a performance bound of the estimator U B(h) in the case when σ 2 is finite.
The somewhat more complicated case of infinite second moment is treated in Section 2.2.

Theorem 1. Let X1, . . . , Xn be i.i.d. random variables taking values in X . Let h : X m
→ R be a

symmetric kernel that is P-degenerate of order q − 1. Assume Var (h(X1, . . . , Xm)) = σ 2 < ∞.
Let δ ∈ (0, 1

2 ) be such that ⌈log(1/δ)⌉ ≤
n

64m . Let B be a regular partition of {1, . . . , n} with
|B| = 32m ⌈log(1/δ)⌉. Then, with probability at least 1 − 2δ, we have

U B(h) − mh
 ≤ Kmσ


⌈log(1/δ)⌉

n

q/2

, (7)

where Km = 2
7
2 m+1m

m
2 .

When q = m, the kernel h − mh is P-canonical and the rate of convergence is then given by
(log δ−1/n)m/2. Thus, the new estimator has a performance similar to standard U -statistics as in
(3) and (4) but without the boundedness assumption for the kernel. It is important to note that
a disadvantage of the estimator U B(h) is that it depends on the confidence level δ (through the
number of blocks). For different confidence levels, different estimators are used.

Because of its importance in applications, we spell out the special case when m = q = 2. In
Section 3 we use this result in an example of cluster analysis.

Corollary 2. Let δ ∈ (0, 1/2). Let h : X 2
→ R be a P-canonical kernel with σ 2

=

Var (h(X1, X2)) and let n ≥ 128(1 + log(1/δ)). Then, with probability at least 1 − 2δ,

|U B(h) − mh | ≤ 512σ
1 + log(1/δ)

n
. (8)

In the proof of Theorem 1 we need the notion of Hoeffding decomposition [12] of U -statistics.
For probability measures P1, . . . , Pm , define P1 × · · · × Pmh =


h d(P1, . . . , Pm). For a
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symmetric kernel h : X m
→ R the Hoeffding projections are defined, for 0 ≤ k ≤ m and

x1, . . . , xk ∈ X , as

πkh(x1, . . . , xk) := (δx1 − P) × · · · × (δxk − P) × Pm−kh

where δx denotes the Dirac measure at the point x . Observe that π0h = Pmh and for k > 0, πkh
is a P-canonical kernel. h can be decomposed as

h(x1, . . . , xm) =

m
k=0


1≤i1<···<ik≤m

πkh(xi1 , . . . , xik ). (9)

If h is assumed to be square-integrable (i.e., Pmh2 < ∞), the terms in (9) are orthogonal. If h is
degenerate of order q − 1, then for any 1 ≤ k ≤ q − 1, πkh = 0.

Proof of Theorem 1. We begin with a “weak” concentration result on each UBi1 ,...,Bim
(h). Let

Bi1 , . . . , Bim be elements of B. For any B ∈ B, we have n
2|B|

≤ |B| ≤
2n
|B|

. We denote by
k = (k1, . . . , km) an element of IBi1 ,...,Bim

. We have, by the above-mentioned orthogonality
property,

Var


UBi1 ,...,Bim
(h)


= E

(UBi1 ,...,Bim

(h) − Pmh)2


=
1

|Bi1 |
2 . . . |Bim |2


k∈IBi1

,...,Bim
l∈IBi1

,...,Bim

E

(h(Xk1 , . . . , Xkm ) − Pmh)(h(Xl1 , . . . , Xlm ) − Pmh)



=
1

|Bi1 |
2 . . . |Bim |2


k∈IBi1

,...,Bim
l∈IBi1

,...,Bim

m
s=q


|k ∩ l|

s


E

πsh(X1, . . . , Xs)

2


(by orthogonality)

≤
1

|Bi1 |
2 . . . |Bim |2


k∈IBi1

,...,Bim

m
s=q

m
t=0


t

s


E

πsh(X1, . . . , Xs)

2


×


2n

|B|

m−t

.

The last inequality is obtained by counting, for any fixed k and t , the number of elements l such
that |k ∩ l| = t . Thus,

Var


UBi1 ,...,Bim
(h)


≤
1

|Bi1 | . . . |Bim |

m
s=q

m
t=q


t

s


E

πsh(X1, . . . , Xs)

2


×


2n

|B|

m−t

≤
1

|Bi1 | . . . |Bim |

m
s=q


m

s


E

πsh(X1, . . . , Xs)

2


×

m
t=q


2n

|B|

m−t

≤
1

n
2|B|

m

m
s=q


m

s


E

πsh(X1, . . . , Xs)

2


× 2


2n

|B|

m−q

≤
22m−q+1

|B|
q

nq

m
s=q


m

s


E

πsh(X1, . . . , Xs)

2

.
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On the other hand, we have, by (9),

Var (h) = E

 m
s=q


1≤i1<···<is≤m

πsh(X i1 , . . . , X is )

2


=

m
s=q


1≤i1<···<is≤m

E


πsh(X i1 , . . . , X is )
2

=

m
s=q

m

s


E

(πsh(X1, . . . , Xs))

2

.

Combining the two displayed equations above,

Var


UBi1 ,...,Bim
(h)


≤
22m−q+1

|B|
q

nq σ 2
≤

22m
|B|

q

nq σ 2.

By Chebyshev’s inequality, for all r ∈ (0, 1),

P


UBi1 ,...,Bim
(h) − Pmh > 2mσ

|B|
q/2

nq/2r1/2


≤ r. (10)

We set x = 2mσ
|B|

q/2

nq/2r1/2 , and

Nx =

(i1, . . . , im) ∈ {1, . . . , V }
m

: 1 ≤ i1 < · · · < im ≤ |B|,

UBi1 ,...,Bim
(h) − Pmh > x

.
The random variable 1

(|B|

m )
Nx is a U -statistics of order m with the symmetric kernel g : (i1, . . . ,

im) → 1{UBi1
,...,Bim

(h)−Pm h>x}. Thus, Hoeffding’s inequality for centered U -statistics (2) gives

P


Nx − ENx ≥ t


|B|

m


≤ exp


−

|B|t2

2m


. (11)

By (10) we have ENx ≤

|B|

m


r . Taking t = r =

1
4 in (11), by the definition of the median, we

have

P

U B(h) − Pm(h) > x


≤ P


Nx ≥


|B|

m


2



≤ exp


−
|B|

32m


.

Since |B| ≥ 32m log(δ−1), with probability at least 1 − δ, we have

U B(h) − Pmh ≤ Kmσ


log δ−1


n

q/2

with Km = 2
7
2 m+1m

m
2 . The upper bound for the lower tail holds by the same argument. �
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2.2. Bounded moment of order p with 1 < p ≤ 2

In this section, we weaken the assumption of finite variance and only assume the existence of
a centered moment of order p for some 1 < p ≤ 2. The outline of the argument is similar as in
the case of finite variance. First we obtain a “weak” concentration inequality for the U -statistics
in each block and then use the property of the median to boost the weak inequality. While for the
case of finite variance weak concentration could be proved by a direct calculation of the variance,
here we need the randomization inequalities for convex functions of U -statistics established
by de la Peña [8] and Arcones and Giné [2]. Note that here we assume that the kernel is
P-canonical.

Theorem 3. Let h be a symmetric kernel of order m such that h − mh is P-canonical. Assume

that Mp := E
h(X1, . . . , Xm) − mh

p1/p
< ∞ for some 1 < p ≤ 2. Let δ ∈ (0, 1

2 ) be such
that


log(δ−1)


≤

n
64m . Let B be a regular partition of {1, . . . , n} with |B| = 32m


log(δ−1)


.

Then, with probability at least 1 − 2δ, we have

|U B(h) − mh | ≤ Km Mp


log(δ−1)


n

m(p−1)/p

(12)

where Km = 25m+1m
m
2 (mm

− 1)((m − 1)m−1
− 1) × · · · × 3.

Proof. Define the centered version of h by g(x1, . . . , xm) := h(x1, . . . , xm)−mh . Let ε1, . . . , εn
be i.i.d. Rademacher random variables (i.e., P {ε1 = −1} = P {ε1 = 1} = 1/2) independent of
X1, . . . , Xn . Let Cm = 2m(p+1)(mm

− 1)((m − 1)m−1
− 1) × · · · × 3. By the randomization

inequalities (see Theorem 3.5.3 in [9] and also Theorem 8 in the Appendix), we have

E





(k1,...,km )∈IBi1

,...,Bim

g(Xk1 , . . . , Xkm )


p

≤ CmEX Eε





(k1,...,km )∈IBi1

,...,Bim

εk1 . . . εkm g(Xk1 , . . . , Xkm )


p (13)

≤ CmEX


Eε


 

(k1,...,km )∈IBi1
,...,Bim

εk1 . . . εkm g(Xk1 , . . . , Xkm )


2


p/2

= CmEX





(k1,...,km )∈IBi1

,...,Bim

g(Xk1 , . . . , Xkm )2


p/2

≤ Cm


(k1,...,km )∈IBi1

,...,Bim

E|g(Xk1 , . . . , Xkm )|p

= Cm |Bi1 | · · · |Bim |E|g|
p. (14)
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Thus, we have E

|UBi1 ,...,Bim

(h) − mh |
p


≤ Cm(|Bi1 | . . . |Bim |)1−pE|g|
p and by Markov’s

inequality,

P

UBi1 ,...,Bim
(h) − mh >

C1/p
m Mp

r1/p


n

2|B|

m 1−p
p

 ≤ r. (15)

Another use of (11) with t = r =
1
4 gives

U B(h) − Pmh ≤ Km Mp


log δ−1


n

m p−1
p

with Km = 25m+1m
m
2 (mm

− 1)((m − 1)m−1
− 1) × · · · × 3. �

To see why the bound of Theorem 3 gives essentially the right order of magnitude, consider
again the example described in the introduction, when m = 2, h(X1, X2) = X1 X2, and the X i
have an α-stable law S(γ, α) for some γ > 0 and 1 < α ≤ 2. Note that an α-stable random
variable has finite moments up to (but not including) α and therefore we may take any p = α − ϵ

for any ϵ ∈ (0, 1 − α). As we noted it in the introduction, there exists a constant c depending on
α and γ only such that for all 1 ≤ i1 < i2 ≤ V ,

P

UBi1 ,Bi2
(h) − mh

 ≥ c


n

|B|

2/α−2


≥ 2/3,

and therefore (15) is essentially the best rate one can hope for.

3. Cluster analysis with U-statistics

In this section we illustrate the use of the proposed mean estimator in a clustering problem
when the presence of possibly heavy-tailed data requires robust techniques.

We consider the general statistical framework defined by Clémençon [6], described as follows:
Let X, X ′ be i.i.d. random variables taking values in X where typically but not necessarily, X
is a subset of Rd . For a partition P of X into K disjoint sets – the so-called “cells” –, define
ΦP (x, x ′) =


C∈P 1{(x,x ′)∈C 2} the {0, 1}-valued function that indicates whether two elements

x and x ′ belong to the same cell C. Given a dissimilarity measure D : X 2
→ R∗

+, the clustering
task consists in finding a partition of X minimizing the clustering risk

W (P) = E

D(X, X ′)ΦP (X, X ′)


.

Let ΠK be a finite class of partitions P of X into K cells and define W ∗
= minP ∈ΠK W (P).

Given X1, . . . , Xn be i.i.d. random variables distributed as X , the goal is to find a partition
P ∈ ΠK with risk as close to W ∗ as possible. A natural idea – and this is the approach of
Clémençon [6] – is to estimate W (P) by the U -statistics

Wn(P) =
2

n(n − 1)


1≤i< j≤n

D(X i , X j )ΦP (X i , X j )

and choose a partition minimizing the empirical clustering risk Wn(P). Clémençon [6] uses the
theory of U -processes to analyze the performance of such minimizers of U -statistics. However,
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in order to control uniform deviations of the form supP ∈ΠK
|Wn(P) − W (P)|, exponential

concentration inequalities are needed for U -statistics. This restricts one to consider bounded
dissimilarity measures D(X, X ′). When D(X, X ′) may have a heavy tail, we propose to replace
U -statistics by the median-of-means estimators of W (P) introduced in this paper.

Let B be a regular partition of {1, . . . , n} and define the median-of-means estimator W B(P)

of W (P) as in (6). Then Theorem 1 applies and we have the following simple corollary.

Corollary 4. Let ΠK be a class of partitions of cardinality |ΠK | = N. Assume that σ 2
:=

E

D(X1, X2)

2


< ∞. Let δ ∈ (0, 1/2) such that n ≥ 128 ⌈log(N/δ)⌉. Let B be a regular
partition of {1, . . . , n} with |B| = 64 ⌈log(N/δ)⌉. Then there exists a constant C such that, with
probability at least 1 − 2δ,

sup
P ∈ΠK

|W B(P) − W (P)| ≤ Cσ


⌈log(N/δ)⌉

n

1/2

. (16)

Proof. Since ΦP (x, x ′) is bounded by 1, Var (D(X1, X2)ΦP (X1, X2)) ≤ E

D(X1, X2)

2

. For

a fixed P ∈ ΠK , Theorem 1 applies with m = 2 and q = 1. The inequality follows from the
union bound. �

Once uniform deviations of W B(P) from its expected value are controlled, it is a routine
exercise to derive performance bounds for clustering based on minimizing W B(P) over P ∈ ΠK .

Let P = argminP ∈ΠK
W B(P) denote the empirical minimizer. (In case of multiple

minimizers, one may select one arbitrarily.) Now for any P0 ∈ ΠK ,

W (P) − W ∗
= W (P) − W B(P) + W B(P) − W ∗

≤ W (P) − W B(P) + W B(P0) − W (P0) + W (P0) − W ∗

≤ 2 sup
P ∈ΠK

|W B(P) − W (P)| + W (P0) − W ∗.

Taking the infimum over ΠK ,

W (P) − W ∗
≤ 2 sup

P ∈ΠK

|W B(P) − W (P)|. (17)

Finally, (16) implies that

W (P) − W ∗
≤ 2Cσ


1 + log(N/δ)

n

1/2

.

This result is to be compared with Theorem 2 of Clémençon [6]. Our result holds under the
only assumption that D(X, X ′) has a finite second moment. (This may be weakened to assuming
the existence of a finite pth moment for some 1 < p ≤ 2 by using Theorem 3). On the other
hand, our result holds only for a finite class of partitions while Clémençon [6] uses the theory
of U -processes to obtain more sophisticated bounds for uniform deviations over possibly infinite
classes of partitions. It remains a challenge to develop a theory to control processes of median-
of-means estimators – in the style of Arcones and Giné [2] – and not having to resort to the use
of simple union bounds.

In the rest of this section we show that, under certain “low-noise” assumptions, analogous to
the ones introduced by Mammen and Tsybakov [16] in the context of classification, are possible
to obtain faster rates of convergence. In this part we need bounds for P-canonical kernels and use
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the full power of Corollary 2. Similar arguments for the study of minimizing U -statistics appear
in [7,6].

We assume the following conditions, also considered by Clémençon [6]:

1. There exists P ∗ such that W (P ∗) = W ∗

2. There exist α ∈ [0, 1] and κ < ∞ such that for all P ∈ ΠK and for all x ∈ X ,

P {ΦP (x, X) ≠ ΦP ∗(x, X)} ≤ κ(W (P) − W ∗)α.

Note that α ≤ 2 since by the Cauchy–Schwarz inequality,

W (P) − W ∗
≤ E


D(X1, X2)

2
1/2

P {ΦP (X1, X2) ≠ ΦP ∗(X1, X2)}
1/2 .

Corollary 5. Assume the conditions above and that σ 2
:= E


D(X1, X2)

2


< ∞. Let δ ∈

(0, 1/2) such that n ≥ 128 ⌈log(N/δ)⌉. Let B be a regular partition of {1, . . . , n} with
|B| = 64 ⌈log(N/δ)⌉. Then there exists a constant C such that, with probability at least 1 − 2δ,

W (P) − W ∗
≤ Cσ 2/(2−α)


⌈log(N/δ)⌉

n

1/(2−α)

. (18)

The proof of Corollary 5 is postponed to the Appendix.
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Appendix

A.1. Decoupling and randomization

Here we summarize some of the key tools for analyzing U -statistics that we use in the paper.
For an excellent exposition we refer to [9].

Let {X i } be i.i.d. random variables taking values in X and let {X k
i }, k = 1, . . . , m, be

sequences of independent copies. Let Φ be a non-negative function. By a result of de la Peña
[8] (see also Theorem 3.1.1 in [9]), we have the following:

Theorem 6. Let h : X m
→ R be a measurable function with E|h(X1, . . . , Xm)| < ∞. Let Φ :

[0, ∞) → [0, ∞) be a convex nondecreasing function such that EΦ (|h(X1, . . . , Xm)|) < ∞.
Then

EΦ



I m
n

h(X i1 , . . . , X im )


 ≤ EΦ

Cm



I m
n

h(X1
i1
, . . . , Xm

im
)




where Cm = 2m(mm
− 1)((m − 1)m−1

− 1) × · · · × 3. Moreover, if the kernel h is symmetric,
then,

EΦ

cm



I m
n

h(X1
i1
, . . . , Xm

im
)


 ≤ EΦ



I m
n

h(X i1 , . . . , X im )




where cm = 1/(22m−2(m − 1)!).
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An equivalent result for tail probabilities of U -statistics is the following theorem due to [10]
(see Theorem 3.4.1 in [9]):

Theorem 7. Under the same hypotheses as Theorem 6, there exists a constant Cm depending on
m only such that, for all t > 0,

P




I m
n

h(X i1 , . . . , X im )

 > t

 ≤ CmP

Cm



I m
n

h(X1
i1
, . . . , Xm

im
)

 > t

 .

If moreover, the kernel h is symmetric then there exists a constant cm depending on m only such
that, for all t > 0,

cmP

cm



I m
n

h(X1
i1
, . . . , Xm

im
)

 > t

 ≤ P




I m
n

h(X i1 , . . . , X im )

 > t

 .

The next Theorem is a direct corollary of Theorem 3.5.3 in [9].

Theorem 8. Let 1 < p ≤ 2. Let (εi )i≤n be i.i.d Rademacher random variables independent
of the (X i )i≤n . Let h : X → R be a P-degenerate measurable function such that
E (|h(X1, . . . , Xm)|p) < ∞. Then

cmE


I m
n

εi1 . . . εim h(X i1 , . . . , X im )

p
≤ E


I m
n

h(X i1 , . . . , X im )

p

≤ CmE


I m
n

εi1 . . . εim h(X i1 , . . . , X im )

p
,

where Cm = 2m(p+1)(mm
− 1)((m − 1)m−1

− 1) × · · · × 3 and cm = 1/(22m+mp−2(m − 1)!).

The same conclusion holds for decoupled U -statistics.

A.2. α-stable distributions

Proposition 9. Let α ∈ (0, 2). Let X1, . . . , Xn be i.i.d. random variables of law S(γ, α). Let
fγ,α : x → R be the density function of X1. Let Sn =


1≤i≤n X i . Then

(i) fγ,α(x) is an even function.

(ii) fγ,α(x) ∼x→+∞ αγ αcαx−α−1 with cα = sin(πα
2 )Γ (α)/π .

(iii) E

X p

1


is finite for any p < α and is infinite whenever p ≥ α.

(iv) Sn has a α-stable law S(γ n1/α, α).

Proof. (i) and (iv) follow directly from the definition. (ii) is proved in the introduction of
Zolotarev [21]. (iii) is a consequence of (ii). �
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A.3. Proof of Corollary 5

Define Λn(P) = Wn(P) − W ∗, the U -statistics based on the sample X1, . . . , Xn , with
symmetric kernel

hP (x, x ′) = D(x, x ′)

ΦP (x, x ′) − ΦP ∗(x, x ′)


.

We denote by Λ(P) = W (P) − W ∗ the expected value of Λn(P). The main argument in the
following analysis is based on the Hoeffding decomposition. For all partitions P ,

Λn(P) − Λ(P) = 2Ln(P) + Mn(P)

for Ln(P) =
1
n


i≤n h(1)(X i ) with h(1)(x) = E [hP (X, x)] − Λ(P) and Mn(P) the U -statistics

based on the canonical kernel given by h(2)(x, x ′) = hP (x, x ′) − h(1)(x) − h(1)(x ′) −Λ(P). Let
B be a regular partition of {1, . . . , n}. For any B ∈ B,ΛB(P) is the U -statistics on the kernel
hP restricted to the set B and ΛB(P) is the median of the sequence (ΛB(P))B∈B . We define
similarly L B(P) and MB(P) on the variables (X i )i∈B . For any B ∈ B,

Var (ΛB(P)) = 4Var (L B(P)) + Var (MB(P))

=
4

|B|
Var


h(1)(X)


+

2
|B|(|B| − 1)

Var


h(2)(X1, X2)


.

Simple computations show that Var

h(2)(X1, X2)


= 2Var


h(1)(X)


and therefore,

Var (ΛB(P)) ≤
8

|B|
Var


h(1)(X)


.

Moreover,

Var


h(1)(X)


≤ EX ′


EX


hP (X, X ′)

2
≤ EX ′


EX


D(X, X ′)2


EX


ΦP (X, X ′) − ΦP ∗(X, X ′)

2
= EX ′


EX


D(X, X ′)2


PX


ΦP (X, X ′) ≠ ΦP ∗(X, X ′)


≤ σ 2κ(W (P) − W ∗)α

where EX (resp. EX ′ ) refers to the expectation taken with respect to X (resp. X ′). Chebyshev’s
inequality gives, for r ∈ (0, 1),

P


ΛB(P) − Λ(P) > σ(W (P) − W ∗)α/2


8κ

r |B|


≤ r.

Using again (11) with r =
1
4 , by |B| ≥

n
128⌈log(N/δ)⌉

, there exists a constant C such that for any
P ∈ ΠK , with probability at least 1 − 2δ/N ,

|ΛB(P) − Λ(P)| ≤ Cσ(W (P) − W ∗)α/2


⌈log(N/δ)⌉

n
.

This implies by the union bound, that

|W B(P) − W (P)| ≤ Kσ(W (P) − W ∗)α/2


⌈log(N/δ)⌉

n
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with probability at least 1 − 2δ. Using (17), we obtain

(W (P) − W ∗)1−α/2
≤ 2Kσ


⌈log(N/δ)⌉

n
,

concluding the proof.
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[9] V. de la Peña, E. Giné, Decoupling: From Dependence to Independence, Springer, New York, 1999.

[10] V. de la Peña, S. Montgomery-Smith, Decoupling inequalities for the tail probabilities of multivariate U -statistics,
Ann. Probab. 23 (1995) 806–816.
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